

A191

Tetrahedron: Asymmetry 13 (2002) 933

D.e. >99% $[\alpha]_D^{25} = -482$ (*c* 1.68, CHCl₃) Source of chirality: *N*-(*tert*-butoxycarbonyl)-L-alanine Absolute configuration: 3*S*,9b*S*

 $C_{18}H_{18}N_2O$ (3*S*,9b*S*)-1-(4-Methylphenyl)-3-methyl-1,2,3,9b-tetrahydro-5*H*-imidazo[2,1-*a*]isoindol-5-one

Alan R. Katritzky,* Hai-Ying He and Akhilesh K. Verma $\begin{array}{c} \hline \\ Fetrahedron: Asymmetry 13 (2002) 933 \\ \hline \\ D.e. >99\% \\ [\alpha]_{D}^{25} = -373 (c \ 1.66, \ CHCl_3) \\ Source \ of \ chirality: \ N-(tert-butoxycarbonyl)-L-valine \\ Absolute \ configuration: \ 3S,9bS \\ \hline \\ (3S,9bS)-1-(4-Methylphenyl)-3-isopropyl-1,2,3,9b-tetrahydro-5H-imidazo[2,1-a]jsoindol-5-one \\ \hline \end{array}$

A197

H₃C N CH₃ Tetrahedron: Asymmetry 13 (2002) 933

D.e. >99% $[\alpha]_D^{25} = +2.6 \ (c \ 1.50, \ CHCl_3)$ Source of chirality: *N*-(*tert*-butoxycarbonyl)-L-alanine Absolute configuration: 3S,9bS

C₁₈H₂₄N₂O (3*S*,9b*S*)-1-Cyclohexyl-3,9b-dimethyl-1,2,3,9b-tetrahydro-5*H*-imidazo[2,1-*a*]isoindol-5-one

Gregory A. Reichard,* James Spitler, Ingrid Mergelsberg, Alan Miller, George Wong, Ramani Raghavan, John Jenkins, Tong Gan and Andrew T. McPhail $Me \bigvee_{H} \bigvee_{O} \bigvee_{O}$

 $C_{18}H_{32}N_3O_4 \eqno(3R)-[2-(Methylamino)-2-oxoethyl]-2-oxo-[1,4'-bipiperidine]-1'-carboxylic acid, 1,1-dimethylethyl ester (3R)-[2-(Methylamino)-2-oxoethyl]-2-oxoethyl$

Tetrahedron: Asymmetry 13 (2002) 939

Alan Miller, George Wong, Ramani Raghavan, John Jenkins, Tong Gan and Andrew T. McPhail E.e. >99%

Gregory A. Reichard,* James Spitler, Ingrid Mergelsberg,

E.e. >99% $[\alpha]_D^{23} = +32.6 \ (c \ 0.2, \text{ methanol})$ Source of chirality: (*R*)-4-benzyl-2-oxazolidinone Absolute configuration: 3*R* Qianyong Xu,* Hongfang Yang, Xinfu Pan and Albert S. C. Chan

Tetrahedron: Asymmetry 13 (2002) 945

NHCO₂CH₂CH₃

 H_3C_1

.vOH

C₁₂H₁₃NO₃ (S)-2-[(Ethoxycarbonyl)amino]-1-indanone $[\alpha]_{D}^{20} = +12.0$ (c 1.21, CH₃OH) Source of chirality: L-phenylalanine Absolute configuration: S

Qianyong Xu,* Hongfang Yang, Xinfu Pan and Albert S. C. Chan

Tetrahedron: Asymmetry 13 (2002) 945

 $[\alpha]_D^{20} = -7.6$ (c 0.82, CH₃OH) Source of chirality: L-phenylalanine Absolute configuration: 1S, 2S

 $\label{eq:C13} C_{13}H_{17}NO_3$ trans-(15,25)-1-Methyl-2-[(N-ethoxycarbonyl)amino]-1-indanol

NHCO₂CH₂CH₃

Qianyong Xu,* Hongfang Yang, Xinfu Pan and Albert S. C. Chan $\begin{bmatrix} \alpha \end{bmatrix}_{D}^{20} = -9.7 \ (c \ 0.99, CH_3OH) \\ Source \ of \ chirality: \ L-phenylalanine \\ Absolute \ configuration: \ 1S,2S \end{bmatrix}$

C₁₄H₁₉NO₃ trans-(1S,2S)-1-Ethyl-2-[(N-ethoxycarbonyl)amino]-1-indanol

trans-(1S,2S)-1-Phenyl-2-[(N-ethoxycarbonyl)amino]-1-indanol

Qianyong Xu,* Hongfang Yang, Xinfu Pan and Albert S. C. Chan $\begin{bmatrix} \alpha \end{bmatrix}_{D}^{20} = -122.0 \ (c \ 0.81, CH_3OH) \\ Source \ of \ chirality: \ L-phenylalanine \\ Absolute \ configuration: \ 1S,2S \end{bmatrix}$

Tetrahedron: Asymmetry 13 (2002) 945 Qianyong Xu,* Hongfang Yang, Xinfu Pan and Albert S. C. Chan $[\alpha]_{D}^{20} = +22.5 \ (c \ 0.60, \ CH_{3}OH)$ Source of chirality: L-phenylalanine Absolute configuration: 1S,2S H₃C "0H NH_2 C10H13NO3 trans-(1S,2S)-1-Methyl-2-amino-1-indanol Tetrahedron: Asymmetry 13 (2002) 945 Qianyong Xu,* Hongfang Yang, Xinfu Pan and Albert S. C. Chan $[\alpha]_D^{20} = +29.2 \ (c \ 0.60, \ CH_3OH)$ Source of chirality: L-phenylalanine Absolute configuration: 1S,2S H₃CH₂C .vOH NH_2 $C_{11}H_{15}NO$ trans-(1S,2S)-1-Ethyl-2-amino-1-indanol Tetrahedron: Asymmetry 13 (2002) 945 Qianyong Xu,* Hongfang Yang, Xinfu Pan and Albert S. C. Chan

 $[\alpha]_D^{20} = +67.8$ (*c* 0.51, CH₃OH) Source of chirality: L-phenylalanine Absolute configuration: 1*S*,2*S*

C₁₅H₁₅NO *trans-*(1*S*,2*S*)-1-Phenyl-2-amino-1-indanol

trans-(1S,2S)-1-Methyl-2-(N,N-diethylamino)-1-indanol

NH₂

Ph

.vOH

Qianyong Xu,* Hongfang Yang, Xinfu Pan and Albert S. C. Chan $\begin{bmatrix} \alpha \end{bmatrix}_{D}^{20} = +34.6 \ (c \ 0.55, CH_{3}OH)$ Source of chirality: L-phenylalanine Absolute configuration: 1*S*,2*S* $\begin{bmatrix} H_{3}C \\ H_{2}CH_{3} \end{bmatrix}_{2}$ $C_{14}H_{21}NO$ Qianyong Xu,* Hongfang Yang, Xinfu Pan and Albert S. C. Chan

Tetrahedron: Asymmetry 13 (2002) 945

 $[\alpha]_D^{20} = +35.8$ (c 0.53, CH₃OH) Source of chirality: L-phenylalanine Absolute configuration: 1S,2S

C₁₅H₂₃NO trans-(1S,2S)-1-Ethyl-2-(N,N-diethylamino)-1-indanol

N(CH₂CH₃)₂

H₃CH₂C

HO/

Qianyong Xu,* Hongfang Yang, Xinfu Pan and Albert S. C. Chan $\begin{bmatrix} \alpha \end{bmatrix}_{D}^{20} = -31.6 (c \ 0.49, CH_{3}OH) \\Source of chirality: L-phenylalanine \\Absolute configuration: 1S,2S \\C_{19}H_{23}NO \\trans-(1S,2S)-1-Phenyl-2-(N,N-diethylamino)-1-indanol \\Tetrahedron: Asymmetry 13 (2002) 945$

Qianyong Xu,* Hongfang Yang, Xinfu Pan and Albert S. C. Chan $\begin{bmatrix} \alpha \end{bmatrix}_{D}^{20} = +26.9 (c \ 0.64, CH_{3}OH)$ Source of chirality: L-phenylalanine Absolute configuration: 1*S*,2*S* $I_{18}H_{29}NO$ *trans-*(1*S*,2*S*)-1-Methyl-2-(*N*,*N*-dibutylamino)-1-indanol

Qianyong Xu,* Hongfang Yang, Xinfu Pan and Albert S. C. Chan	Tetrahedron: Asymmetry 13 (2002) 945
$[\alpha]_{D}^{20} = +41.4$ (c 0.72, CH ₃ OH)	
Sour	ce of chirality: L-phenylalanine
H ₃ CH ₂ C Abs	plute configuration: 1 <i>S</i> ,2 <i>S</i>
N(CH ₂ CH ₂ CH ₂ CH ₃) ₂	
C ₁₉ H ₃₁ NO	
trans-(1S,2S)-1-Ethyl-2-(N,N-dibutylamino)-1-indanol	

CO₂CH₂CH₂CH₃ C12H14O4 3-Propoxycarbonylbicyclo[2.2.1]hept-2,5-diene-2-carboxylic acid

A203

C11H12O4

Satomi Niwayama*

Tetrahedron: Asymmetry 13 (2002) 953

E.e. >99% $[\alpha]_{\rm D} = -9.7$ (*c* = 2.6, CHCl₃) Source of chirality: enzyme reaction

Absolute configuration: 2S,3R

E.e. >99% $[\alpha]_{\rm D} = -13.4$ (c = 2.4, CHCl₃) Source of chirality: enzyme reaction

Absolute configuration: 2S,3R

Ph

.vOH

Satomi Niwayama*

N(CH₂CH₂CH₂CH₃)₂

 $C_{10}H_{10}O_4$ 3-Methoxycarbonylbicyclo[2.2.1]hept-2,5-diene-2-carboxylic acid

-CH2

3-Ethoxycarbonylbicyclo[2.2.1]hept-2,5-diene-2-carboxylic acid

Yasuhiro Kashima, Jianxiu Liu, Shigeharu Takenami and

Yasuhiro Kashima, Jianxiu Liu, Shigeharu Takenami and Satomi Niwayama*

Tetrahedron: Asymmetry 13 (2002) 953

 $[\alpha]_{\rm D} = -25.7 \ (c = 1.9, \ {\rm CHCl}_3)$ Source of chirality: enzyme reaction Absolute configuration: 2S,3R

E.e. >99%

C23H31NO trans-(1S,2S)-1-Phenyl-2-(N,N-dibutylamino)-1-indanol

Yasuhiro Kashima, Jianxiu Liu, Shigeharu Takenami and

Tetrahedron: Asymmetry 13 (2002) 945

Tetrahedron: Asymmetry 13 (2002) 953

 $[\alpha]_{D}^{20} = -21.2 \ (c \ 0.64, \ CH_{3}OH)$ Source of chirality: L-phenylalanine Absolute configuration: 1S,2S

Qianyong Xu,* Hongfang Yang, Xinfu Pan and Albert S. C. Chan

Dawei Ma,* Ke Ding, Hongqi Tian, Baomin Wang and Dongliang Cheng

HO₂C

 $\label{eq:c11} C_{11} H_{11} \text{NO}_5$ (S)-6-Hydroxy-1-aminoindan-1,5-dicarboxylic acid

Dawei Ma,* Ke Ding, Hongqi Tian, Baomin Wang and Dongliang Cheng

HO)₂(O)P

 $\label{eq:c10} C_{10} H_{12} NO_6 P$ (S)-6-Hydroxy-5-phosphono-1-aminoindan-1-carboxylic acid

Dawei Ma,* Ke Ding, Hongqi Tian, Baomin Wang and Dongliang Cheng

OMe OH

√ H CO₂Bu-*t*

Tetrahedron: Asymmetry 13 (2002) 961

 $[\alpha]_{D}^{20} = +87.2$ (c 0.1, 6N HCl) Source of chirality: using (S)-phenylglycine as starting material Absolute configuration: S

Tetrahedron: Asymmetry 13 (2002) 961

 $[\alpha]_{D}^{20} = +76.3$ (c 0.1, 6N HCl) Source of chirality: using (S)-phenylglycine as starting material Absolute configuration: S

Tetrahedron: Asymmetry 13 (2002) 961

 $[\alpha]_D^{18} = -2.6$ (*c* 1.5, CHCl₃) Source of chirality: using (*R*)-phenylglycinol as starting material Absolute configuration: *S*,*R*

 $\label{eq:c24} C_{24}H_{31}NO_5$ (S)-2-((R)-2-Hydroxy-1-phenylethylamino)-2-(4-methylphenyl)succinic acid 4-*tert*-butyl ester, 1-methyl ester

Dawei Ma,* Ke Ding, Hongqi Tian, Baomin Wang and Dongliang Cheng

Me CO₂Bu-t

Tetrahedron: Asymmetry 13 (2002) 961

 $[\alpha]_D^{20} = +23.5$ (*c* 2.6, CHCl₃) Source of chirality: using (*R*)-phenylglycinol as starting material Absolute configuration: *R*,*R*

 $C_{24}H_{31}NO_5$ (*R*)-2-((*R*)-2-Hydroxy-1-phenylethylamino)-2-(4-methylphenyl)succinic acid 4-*tert*-butyl ester, 1-methyl ester

Dawei Ma,* Ke Ding, Hongqi Tian, Baomin Wang and Dongliang Cheng Tetrahedron: Asymmetry 13 (2002) 961

 $[\alpha]_D^{20} = +31.3$ (c 1.1, CHCl₃) Source of chirality: using (S)-phenylglycine as starting material Absolute configuration: S

MeO₂CHN, CO₂Me

 $C_{13}H_{15}NO_6$ (S)-2-(Methoxycarbonyl)amino-2-phenylsuccinic acid, 1-methyl ester

Dawei Ma,* Ke Ding, Hongqi Tian, Baomin Wang

Tetrahedron: Asymmetry 13 (2002) 961

MeO₂CHN, CO₂Me

MeO₂CHN

and Dongliang Cheng

 $C_{13}H_{13}NO_5$ (S)-1-(Methoxycarbonyl)amino-3-oxoindan-1-carboxylic acid, methyl ester

Dawei Ma,* Ke Ding, Hongqi Tian, Baomin Wang and Dongliang Cheng

.CO₂Me

Absolute configuration: S

Source of chirality: using (S)-phenylglycine as starting

 $[\alpha]_{\rm D}^{20} = +188.4$ (c 1.0, CHCl₃)

material

Tetrahedron: Asymmetry 13 (2002) 961

 $[\alpha]_{D}^{20} = +118.6 \ (c \ 0.95, \ CHCl_3)$ Source of chirality: using (S)-phenylglycine as starting material Absolute configuration: S

Dawei Ma,* Ke Ding, Hongqi Tian, Baomin Wang and Dongliang Cheng

MeO₂CHN, CO₂H

 $C_{13}H_{13}NO_6$ (S)-1-(Methoxycarbonyl)aminoindan-1,6-dicarboxylic acid

Tetrahedron: Asymmetry 13 (2002) 961

 $[\alpha]_{D}^{20} = +124.1 \ (c \ 0.11, \ CHCl_3)$ Source of chirality: using (S)-phenylglycine as starting material Absolute configuration: S

and Dongliang Cheng $[\alpha]_{\rm D}^{20} = +81 \ (c \ 0.11, \ {\rm H}_2{\rm O})$ Source of chirality: using (S)-phenylglycine as starting CO₂H material Absolute configuration: S C10H11NO4 (S)-1-Aminoindan-1,6-dicarboxylic acid Tetrahedron: Asymmetry 13 (2002) 961 Dawei Ma,* Ke Ding, Hongqi Tian, Baomin Wang and Dongliang Cheng $[\alpha]_{D}^{20} = +45.5 \ (c \ 0.6, \ CHCl_{3})$ Source of chirality: using (S)-phenylglycine as starting MeO₂CHN ,CO₂Me material HO Absolute configuration: S C13H15NO5 (S)-6-Hydroxy-1-(methoxycarbonyl)aminoindan-1-carboxylic acid, methyl ester Tetrahedron: Asymmetry 13 (2002) 961 Dawei Ma,* Ke Ding, Hongqi Tian, Baomin Wang and Dongliang Cheng $[\alpha]_{D}^{20} = +116.3$ (c 0.94, CHCl₃) Source of chirality: using (S)-phenylglycine as starting MeO₂CHN CO₂Me material HO Absolute configuration: S MeO₂C C16H19NO7 (S)-6-Hydroxy-1-(methoxycarbonyl)aminoindan-1,5-dicarboxylic acid, dimethyl ester Tetrahedron: Asymmetry 13 (2002) 961 Dawei Ma,* Ke Ding, Hongqi Tian, Baomin Wang and Dongliang Cheng $[\alpha]_{D}^{20} = +103.9 \ (c \ 0.2, \ \text{CHCl}_{3})$ Source of chirality: using (S)-phenylglycine as starting MeO₂CHN "CO₂Me material HO Absolute configuration: S (EtO)₂(O)P C₁₇H₂₄NO₈P (S)-6-Hydroxy-5-diethylphosphono-1-(methoxycarbonyl)aminoindan-1-carboxylic acid, methyl ester

Dawei Ma,* Ke Ding, Hongqi Tian, Baomin Wang

Tetrahedron: Asymmetry 13 (2002) 961

Dawei Ma,* Ke Ding, Hongqi Tian, Baomin Wang and Dongliang Cheng

,CO₂Me

MeO₂CHN

MeO₂CHN CO₂Me

Tetrahedron: Asymmetry 13 (2002) 961

 $[\alpha]_D^{18} = +12.0$ (c 2.3, CHCl₃) Source of chirality: using (*R*)-phenylglycinol as starting material Absolute configuration: *S*

 $C_{14}H_{17}NO_6$ (S)-2-(Methoxycarbonyl)amino-2-(4-methylphenyl)succinic acid, 1-methyl ester

(5)-2-(wethoxycaroony)/annio-2-(4-methyiphenyi)/succinic acid, 1-methyi eser

Dawei Ma,* Ke Ding, Hongqi Tian, Baomin Wang and Dongliang Cheng

Tetrahedron: Asymmetry 13 (2002) 961

 $[\alpha]_D^{18} = +78$ (*c* 0.7, CHCl₃) Source of chirality: using (*R*)-phenylglycinol as starting material Absolute configuration: *S*

 $C_{14}H_{15}NO_5$ (S)-1-(Methoxycarbonyl)amino-5-methyl-3-oxoindan-1-carboxylic acid methyl ester

Dawei Ma,* Ke Ding, Hongqi Tian, Baomin Wang and Dongliang Cheng

MeO₂CHN, CO₂Me

Br₂HC

Tetrahedron: Asymmetry 13 (2002) 961

 $[\alpha]_D^{18} = +51 \ (c \ 1.0, \ CHCl_3)$ Source of chirality: using (*R*)-phenylglycinol as starting material Absolute configuration: *S*

 $\label{eq:c14} C_{14}H_{13}Br_2NO_5$ (S)-1-(Methoxycarbonyl)amino-5-dibromomethyl-3-oxoindan-1-carboxylic acid methyl ester

Dawei Ma,* Ke Ding, Hongqi Tian, Baomin Wang and Dongliang Cheng

MeO₂CHN, CO₂Me

C15H15NO7

 $[\alpha]_D^{18} = +87.4$ (c 286, CHCl₃) Source of chirality: using (*R*)-phenylglycinol as starting material Absolute configuration: *S*

Tetrahedron: Asymmetry 13 (2002) 961

(S)-1-(Methoxycarbonyl)amino-3-oxoindan-1,5-dicarboxylic acid, dimethyl ester

Dawei Ma,* Ke Ding, Hongqi Tian, Baomin Wang and Dongliang Cheng MeO₂CHN, CO₂Me MeO₂C Tetrahedron: Asymmetry 13 (2002) 961

 $[\alpha]_D^{18} = +44.8 \ (c \ 3.2, \ CHCl_3)$ Source of chirality: using (*R*)-phenylglycinol as starting material Absolute configuration: *S*

 $C_{15}H_{17}NO_6$ (S)-1-(Methoxycarbonyl)amino-3-indan-1,5-dicarboxylic acid, dimethyl ester

Dawei Ma,* Ke Ding, Hongqi Tian, Baomin Wang and Dongliang Cheng

H₂N CO₂H

Tetrahedron: Asymmetry 13 (2002) 961

 $[\alpha]_D^{18} = +83.5$ (c 0.9, 6N HCl) Source of chirality: using (*R*)-phenylglycinol as starting material Absolute configuration: *S*

Hélène Boussac, Jeanne Crassous,* Jean-Pierre Dutasta, Laurent Grosvalet and Alain Thozet

Laura Gibert, Asensio González,* Jaume Granell and

NH

NH

S

C₂₆H₄₀N₄O₁₂S₄ Cyclo(malonyl-L-cysteine ethyl ester)₂

CO₂CH₂CH₃

CO₂CH₂CH₃

Tetrahedron: Asymmetry 13 (2002) 975

E.e. \geq 99% [α]_D²⁵ = +28.0 (*c* 1.1, acetone) Source of chirality: resolution with (*R*)-(+)- α -methylbenzylamine Absolute configuration: *S*

C₂H₂BrFO₂ (S)-Bromofluoroacetic acid

Concepción López CH₃CH₂O₂C,

CH₃CH₂O₂O

NΗ

CO₂H

HO₂C

C₁₁H₁₁NO₄ (S)-1-Amino-3-indan-1,5-dicarboxylic acid

Tetrahedron: Asymmetry 13 (2002) 983

E.e. = 100% $[\alpha]_{D}^{20} = -88 \ (c = 0.1, \text{ DMSO})$ Source of chirality: L-cysteine Absolute configuration: *R*,*R*,*R*

A209

 $C_{25}H_{40}O_6Si$ l,2-O-Cyclohexylidiene-6-O-(t-butyldimethylsilyl)-1,2,5,6-tetrahydroxy-4-(4-methoxyphenyl)hexan-3-one

